
Real Time Path Tracing with Implicit Geometries
Defined by Distance Functions

Zhuo Lu∗ Diyu Luo Jiejun Luo

ABSTRACT
Real-time rendering with global illumination can be computation-
ally expensive if a large scene with great details is stored in explicit
vertices and edges. In this paper, we attempt to realize the idea
of real-time path tracing by drawing two triangles that cover the
whole screen and perform sphere path tracing in fragment shader.
We model a complex 3-D scene of a castle using signed distance
functions, which are more computationally efficient compared to ex-
plicit vertices and edges. We then perform ray-marching algorithm
to find the intersection between the ray and the scene. The final
rendering result is real-time and entails advantages from global il-
lumination, including soft shadows and more realistic visual effects
from physically based materials.

CCS CONCEPTS
• Computing methodologies→ Computer graphics;

KEYWORDS
Ray Marching; Signed Distance Function; Procedural Modeling

ACM Reference Format:
Zhuo Lu, Diyu Luo, and Jiejun Luo. 2018. Real Time Path Tracing with
Implicit Geometries Defined by Distance Functions.

1 INTRODUCTION
Procedural modeling is the modeling of scenes using algorithms
instead of explicit lists of geometry specified vertex by vertex[3].
There are several reasons to choose procedural modeling. If the
scene is too repetitive, it would be computationally expensive to
store information about every vertex as it is impossible to store such
level of detail — the memory needed would be prohibitively large.
It would be desirable if we could model scenes implicitly, but there
are hardly mature tools or frameworks available. In this paper, we
model a 3-D scene with implicit surfaces like boxes, spheres, cones
and cubes and apply transformations like rotation, translation and
reflection. Constructive solid geometry is used to take the union,
intersection and difference of different objects.We use raymarching
algorithm to find the ray intersection on surfaces of objects in the
scene. We use three types of BSDF — diffuse, mirror and glass — to
model different materials, and bilateral filtering for denoising.

2 METHODS
2.1 Implicit surfaces
Given a function f (p) : Rn → R, we can define a set {p | f (p) =
c; c ∈ R}, called a “level set”, the set of all points where a function

∗Names in alphabetical order.

COMPSCI 184, May 4, 2018, UC Berkeley

f (p) takes value c . For n = 3, this set is called an “isosurface” or
“implicit surface”, as it is the surface implied by the function f (p).
For n = 3, this set is called an “isosurface” or “implicit surface”,
as it is the surface implied by the function f (p)[3]. In this paper,
we combine analytic functions which implies geometric shapes or
details to create scenes.

2.2 Signed distance functions
Distance functions are a special kind of function from R3 to R.
∀p ∈ R3, a distance function d(p) gives the distance to the closest
point of an implicit surface defined by d(p) = 0. A signed distance
function gives a signed distance to that surface, usually with the
distances being negative on the inside of objects[3].

Centered at the origin, the following primitive 3-D objects could
be modeled mathematically using singed distance functions.

2.2.1 Sphere. Sphere is the simplest object to model using dis-
tance functions. The surface of a sphere contains all points that
have distance r from the origin:

dshpere(p, r) = |p | − r (1)

2.2.2 Torus. The signed distance function for torus is

dtorus(p, r1, r2) =
√
(
√
p2x + p

2
y)2 − (r1)2 − r2 (2)

2.2.3 Cylinder. The signed distance function for cylinder is

dcylinder(p, r ,h) =max(
√
p2x + p

2
z − r , |py | −

h

2
) (3)

2.2.4 Cone. The signed distance function for cone is

dcone(p, r ,h) =max(
√
p2x + p

2
z cos(θ) − |py | sin(θ),py − h,−py)

θ = arctan(r
h
)

(4)

2.2.5 Box. The signed distance function for boxwith side length
s = (sx , sy , sz) is:

dbox =max(|px | −
sx
2
, |py | −

sy

2
, |pz | −

sz
2
) (5)

2.3 Ray marching
We use ray marching, also known as sphere marching method, to
find the implicit surface associated with a signed distance field. This
is equivalent to the problem of finding the root of a function d(p)
along the ray. Sphere marching makes use of the fact that with a
distance function, the minimum distance to the surface at any point
in space is known. This gives a minimum safe step distance to the
surface, allowing for fast iteration along the ray without missing
any surface detail[3]. The trick is to be able to compute or estimate

COMPSCI 184, May 4, 2018, UC Berkeley Zhuo Lu, Diyu Luo, and Jiejun Luo

Figure 1: Sphere tracing

Figure 2: Surface normal approximation of sphere

(a lower bound of) the distance to the closest surface at any point
in space, which allows for marching in large steps along the ray[4].

The algorithm proceeds as follows: Similar to ray tracing, we put
the camera at a position and place a pixel grid in front of it. For each
pixel in the grid, we shoot a ray from the camera through it, and find
its intersection with the scene[5]. Since we have an implicit signed
distance function, we can not find the root analytically by setting the
equation to zero. The basic idea of raymarching is tomove along the
ray step by step, and carefully check if the current step hits the scene.
The naive way would be to take constant step size, however we
could speed it up by taking the advantage that we know the distance
between the current point and the implicit surface. This provides a
safe lower bound of the distance between the current point along the
ray and the implicit surface. This method will be significantly faster
than constant-size stepping. Sphere tracing significantly improves
the speed and accuracy if we take a maximum safe step at each
iteration. Figure 4 indicates 4 steps of marching along the ray from
origin p0.

Ray marching inside an object turns out to the same problem
but with a twist. Since signed distance function is defined as the
distance to the closest surface, to find the point that the ray exits the
object, we can simply flip the sign of the signed distance function
and apply the same algorithm to find the closest intersection.

Figure 3: Surface normal approximation of box

Figure 4: Surface normal approximation of capped cone

2.4 Surface normal approximation
Since signed distance field does not explicitly state the normal
vectors along the surface at whichd(p) = 0, we can approximate the
surface normal by taking 6 samples of the signed distance function,
two each along the x , y and z directions and find the gradient.

2.5 Constructive solid geometry
Constructive solid geometry is to use Boolean operations for object
construction. The basic Boolean operations include union, intersec-
tion and difference. We use the following operations to manipulate
with different primitives to model a castle.

2.5.1 Union. To find the union of two objects, we simply take
the minimum of two distances d1, d2, where d1 = d1(p), d2 = d2(p).

2.5.2 Intersection. The intersection of two objects is the maxi-
mum among d1 and d2.

Real Time Path Tracing with Implicit Geometries
Defined by Distance Functions COMPSCI 184, May 4, 2018, UC Berkeley

Figure 5: Diffuse BSDF sphere

2.5.3 Subtraction. Take advantage of the fact that the comple-
ment of a signed distance function d(p) is −d(p), and we could
decompose subtraction as the intersection of d1(p) and −d2(p). So
the signed distance function for subtraction ismax(d1,−d2).

2.6 Domain operations and distance operations
We could take advantage of the mathematical simplicity of implicit
modeling to perform a number of domain and distance operations.

2.6.1 Rotation. Rotation can be achieved by applying a rotation
matrix which rotates the coordinate space. Rotation preserves the
Euclidean norm.

drotated(p) = d(R ∗ p) (6)

2.6.2 Translation. Translation can be achieved by adding a vec-
tor to p. Translation also preserves Euclidean norm.

dtranslated = d(v + p) (7)

2.6.3 Repetition. Infinite repetition can be done easily using
the modulo operation. Let a = (ax ,ay ,az) be the cell size, then
repetition with respect to a is

drepetition = d(


px +

ax
2

mod ax +
ax
2

py +
ay

2
mod ay +

ay

2
px +

az
2

mod az +
az
2


) (8)

2.7 Menger sponge
Menger sponge is a fractal curve. Mathematically it is defined as
the following:

M :=
⋂

Mn
n∈N

(9)

, where M0 is the unit cube and Mn+1 := {(x ,y, z) ∈ R : ∃i, j,k ∈
{0, 1, 2} : (3x−i, 3y−j, 3z−k) ∈ Mn and at most one of i, j,k is equal to 1}.
The algorithm to obtain a menger sponge is the following:

Figure 6: Modeling spatially repeating toruses

Figure 7: A glass menger box

(1) Begin with a cube
(2) Divide every face of the cube into 9 squares. This will sub-

divide the cube into 27 smaller cubes.
(3) Remove the smaller cube in the middle of each face, and

remove the smaller cube in the very center of the larger cube,
leaving 20 smaller cubes.This is a level-1 menger sponge
which resembles a void cube.

(4) Repeat steps 2 and 3 for each of the remaining smaller cubes,
and continue to iterate ad infinitum. [2]

We combine menger box with other primitives in the castle
model to increase the complexity of the scene.

2.8 Bilateral filtering
Abilateral filter is a non-linear, edge-preserving, and noise-reducing
smoothing filter for images. It replaces the intensity of each pixel
with a weighted average of intensity values from nearby pixels.
This weight can be based on a Gaussian distribution [1].

COMPSCI 184, May 4, 2018, UC Berkeley Zhuo Lu, Diyu Luo, and Jiejun Luo

The bilateral filter is defined as:

Ifiltered(x) = 1
Wp

∑
xi ∈Ω

I (xi)fr (

I (xi) − I (x)

)дs (∥xi − x ∥) (10)

, where the normalization term

Wp =
∑
xi ∈Ω

fr (

I (xi) − I (x)

)дs (∥xi − x ∥)

ensures that the filter preserves image energy and Ifiltered is the
filtered image;
I is the original input image to be filtered;
x are the coordinates of the current pixel to be filtered;
Ω is the window centered in x ;
fr is the range kernel for smoothing differences in intensities (this
function can be a Gaussian function);
дs is the spatial kernel for smoothing differences in coordinates
(this function can be a Gaussian function)[1].

2.9 Randomizing numbers in GLSL
Last but not the least, one important detail that lies in random sam-
pling procedure is random numbers. To generate random numbers
between 0 and 1 we utilize a random procedural texture. The first
number generated is from the texture coordinate corresponding to
the screen pixel coordinate; the second number and those onwards
are retrieved from a slight accumulated offset from that origin. Even
though this procedure does not guarantee a uniform distribution,
it is workable enough to produce visually compelling results.

3 RESULTS
3.1 Surface normal approximation
We use colors to represent the surface normal: vectors along (1, 0, 0)
are colored red, (0, 1, 0) colored green, and (0, 0, 1) colored blue.
Each normal vector will be a linear combination of those three
colors. The normal vector direction for each point in the scene could
be easily visualized using a combination of those colors. Figure 1, 2,
and 3 represent the surface normal drawn for a sphere, a box and a
cone.

3.2 Global illumination with BSDF
Figure 5 shows a sphere with diffuse bsdf.

3.3 Modeling Spatially Repeating Pattern
Figure 5 shows an infinite repetition of torus. The colors represent
normal directions.

3.4 Menger sponge
Figure 7 shows a glass menger sponge with two layers of recursion.
Using the x-coordinate of each point, we can bilinearly interpolate
the color between red and grey.

3.5 Scene with mixed materials
Figure 8 shows a scene with mixed material. The blue ball is of mir-
ror material, the yellow torus and green cone are of glass material,
and the red box is of diffuse material. Note the refraction in the red

Figure 8: A scene with diffuse, mirror and glass material

Figure 9: Time varying scene

cone and the reflection of the green cone and red box on the blue
sphere.

3.6 Time varying scene
Figure 9 and 10 shows a time varying scene. A time varying scene
can be constructed as a linear interpolation between two objects.
Let sd f1 represents the signed distance function of object 1, sd f2
represents the signed distance function of object 2, a time varying
scene can be constructed as t ∗ sd f1 + (1 − t) ∗ sd f2

3.7 Modeling a complex scene — castle
In order to model the castle tower, we take the difference between
a torus and a cone, then elongate along the y axis to get the slender
tower top. The top is then taken union with a cylinder. Similarly,
for the tower with sharp top, we use four planes to intersect a box,
then union it with another box. The whole scene is modeled using
primitives including boxes, cones, cylinders, triangle prisms and

Real Time Path Tracing with Implicit Geometries
Defined by Distance Functions COMPSCI 184, May 4, 2018, UC Berkeley

Figure 10: Time varying scene

Figure 11: Final rendering of castle

Figure 12: Castle with color representing normal vector

Figure 13: Castle with color representing ray depth

Figure 14: Denoised scene comparison

transformations including rotation, translation, reflection. Figure
11 shows the castle with diffuse material. Figure 12 shows the castle
with color being the normal of each point. Figure 13 shows the castle
with the colors representing depth of ray from the ray marching
algorithm. Darker color represent more steps. As can be seen from
figure 14, the objects and the ground have significantly lighter color
than the background. This is reasonable as ray marching algorithm
terminates after max number of steps.

3.8 Denoising with bilateral filter
Figure 11 shows a comparison between using maximum six bounce
of radiance and its denoised result with a 5x5 bilateral filter with
σGaussian = 10.0 and σbilateral = 0.06. The noise from Monte Carlo
estimation can be slightly reduced with the introduction of such
filter. However, there are certain traces of patches of dark spots; it
is likely that they are resulted from the random number generator
that implicitly creates hidden patterns.

4 CONCLUSION
Implicit surface modeling significantly saves the space to store the
scene. In order to render the castle scene in real-time, computer

COMPSCI 184, May 4, 2018, UC Berkeley Zhuo Lu, Diyu Luo, and Jiejun Luo

with powerful GPU computation power is needed. Currently we
are using an Alienware R17 computer with GTX 1070 graphics card.
The best real-time simulation on this computer could run at fps 5
with pixel sampling rate 8, light sampling rate 2, max number of
bounces 3 and GPU usage 100 percent. We failed to get a better
performance as increasing any of those sampling parameters will
cause memory overflow.

REFERENCES
[1] [n. d.]. Bilateral filter. Retrieved May 2, 2018 from https://en.wikipedia.org/wiki/

Bilateral_filter
[2] [n. d.]. Menger sponge. Retrieved May 2, 2018 from https://en.wikipedia.org/

wiki/Menger_sponge
[3] Carl Lorenz Diener. 2012. Procedural modeling with signed distance functions.
[4] Inigo Quilez. [n. d.]. Modeling with distance functions. Retrieved April 23, 2018

from http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
[5] Jamie Wong. 2016. Ray Marching and Signed Distance Functions.

Retrieved April 23, 2018 from http://jamie-wong.com/2016/07/15/
ray-marching-signed-distance-functions/

https://en.wikipedia.org/wiki/Bilateral_filter
https://en.wikipedia.org/wiki/Bilateral_filter
https://en.wikipedia.org/wiki/Menger_sponge
https://en.wikipedia.org/wiki/Menger_sponge
http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/

	Abstract
	1 Introduction
	2 Methods
	2.1 Implicit surfaces
	2.2 Signed distance functions
	2.3 Ray marching
	2.4 Surface normal approximation
	2.5 Constructive solid geometry
	2.6 Domain operations and distance operations
	2.7 Menger sponge
	2.8 Bilateral filtering
	2.9 Randomizing numbers in GLSL

	3 Results
	3.1 Surface normal approximation
	3.2 Global illumination with BSDF
	3.3 Modeling Spatially Repeating Pattern
	3.4 Menger sponge
	3.5 Scene with mixed materials
	3.6 Time varying scene
	3.7 Modeling a complex scene — castle
	3.8 Denoising with bilateral filter

	4 Conclusion
	References

